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Introduction

In this paper, we continue our study of the absolute anabelian geometry of
hyperbolic curves over p-adic local fields [i.e., finite extensions of the field of p-adic
numbers, for some prime number p], begun in [Mzk2], [Mzk3]. In [Mzk3], Theorem
2.4, it was shown, as a consequence of the main theorem of [Mzk1], that certain
categories of finite étale correspondences associated to a hyperbolic curve XK over a
p-adic local field K may be recovered from the profinite group structure of the étale
fundamental group ΠXK

of XK . In the present paper, we generalize this result to
show [again as a consequence of the main theorem of [Mzk1]] that certain categories
of arbitrary dominant [i.e., not necessarily finite étale] correspondences associated
to XK may be recovered from the profinite group structure of ΠXK

[cf. Theorem
2.3]. We then apply this result to study the extent to which the decomposition
groups associated to closed points of XK may be recovered from the profinite group
structure of ΠXK

[cf. Corollaries 2.5, 2.6, 3.2]. One result that is representative of
these techniques is the following special case of Corollary 3.2:

Theorem A. Let K be a finite extension of Qp; XK a hyperbolic curve of
genus zero over K which is, in fact, defined over a number field. Write ΠXK

for the étale fundamental group of XK. Then any automorphism of the profinite
group ΠXK

preserves the decomposition groups ⊆ ΠXK
associated to the

closed points of XK.

This result may be regarded as a sort of [very] weak version of the “Section Con-
jecture” [cf., e.g., [Mzk1], §19 for more on the “Section Conjecture”]. Finally, in
§4, we show, in the notation of Theorem A, that various canonical auxiliary struc-
tures associated to the decomposition groups of cusps of XK are also preserved by
arbitrary automorphisms of ΠXK

[cf. Corollary 4.11].
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Section 0: Notations and Conventions

Numbers:

If p is a prime number, then we shall denote by Qp the field of p-adic numbers,
i.e., the completion of the field of rational numbers Q with respect to the p-adic
valuation of Q. We shall refer to a field which is isomorphic to a finite extension
of Qp for some p as a local field. [In particular, in this paper, all “local fields” are
nonarchimedean.] A number field is defined to be a finite extension of the field of
rational numbers Q.

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let us
write

ZG(H) def= {g ∈ G | g · h = h · g, ∀ h ∈ H}
for the centralizer of H in G;

NG(H) def= {g ∈ G | g · H · g−1 = H}

for the normalizer of H in G; and

CG(H) def= {g ∈ G | (g · H · g−1)
⋂

H has finite index in H, g · H · g−1}

for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H) are
subgroups of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)

and (iii) H is normal in NG(H). If H = CG(H), then we shall say that H is
commensurably terminal in G. Note that ZG(H), NG(H) are always closed in G,
while CG(H) is not necessarily closed in G.

If G1, G2 are Hausdorff topological groups, then an outer homomorphism
G1 → G2 is defined to be an equivalence class of continuous homomorphisms
G1 → G2, where two such homomorphisms are considered equivalent if they differ
by composition with an inner automorphism of G2.

Categories:

Let C be a category. We shall denote the collections of objects and arrows of C
by

Ob(C); Arr(C)

respectively. If A ∈ Ob(C) is an object of C, then we shall denote by

CA
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the category whose objects are morphisms B → A of C and whose morphisms (from
an object B1 → A to an object B2 → A) are A-morphisms B1 → B2 in C.

We shall refer to a natural transformation between functors [from one category
to another] all of whose component morphisms are isomorphisms as an isomorphism
between the functors in question. A functor φ : C1 → C2 between categories C1, C2

will be called rigid if φ has no nontrivial automorphisms. A category C will be
called slim if the natural functor CA → C is rigid, for every A ∈ Ob(C).

Given two arrows fi : Ai → Bi (where i = 1, 2) in a category C, we shall refer
to a commutative diagram

A1
∼→ A2⏐⏐�f1

⏐⏐�f2

B1
∼→ B2

— where the horizontal arrows are isomorphisms in C — as an abstract equivalence
from f1 to f2. If there exists an abstract equivalence from f1 to f2, then we shall

say that f1, f2 are abstractly equivalent and write f1
abs≈ f2.

Let G be a profinite group. Then we recall that the category B(G) of finite sets
with continuous G-action and morphisms of G-sets is slim if and only if ZG(H) =
{1} for all open subgroups H ⊆ G.

Curves:

Suppose that g ≥ 0 is an integer. Then if S is a scheme, a family of curves of
genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism of schemes
X → S whose geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We shall denote
the moduli stack of r-pointed stable curves of genus g (where we assume the points
to be unordered) by Mg,r [cf. [DM], [Knud] for an exposition of the theory of such
curves; strictly speaking, [Knud] treats the finite étale covering of Mg,r determined
by ordering the marked points]. The open substack Mg,r ⊆ Mg,r of smooth curves
will be referred to as the moduli stack of smooth r-pointed stable curves of genus g
or, alternatively, as the moduli stack of hyperbolic curves of type (g, r). The divisor
at infinity Mg,r\Mg,r of Mg,r determines a log structure on Mg,r; denote the
resulting log stack by Mlog

g,r.

A family of hyperbolic curves of type (g, r)

X → S

is defined to be a morphism which factors X ↪→ Y → S as the composite of an
open immersion X ↪→ Y onto the complement Y \D of a relative divisor D ⊆ Y
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which is finite étale over S of relative degree r, and a family Y → S of curves of
genus g. One checks easily that, if S is normal, then the pair (Y, D) is unique up
to canonical isomorphism. (Indeed, when S is the spectrum of a field, this fact is
well-known from the elementary theory of algebraic curves. Next, we consider an
arbitrary connected normal S on which a prime l is invertible (which, by Zariski
localization, we may assume without loss of generality). Denote by S′ → S the fi-
nite étale covering parametrizing orderings of the marked points and trivializations
of the l-torsion points of the Jacobian of Y . Note that S′ → S is independent of
the choice of (Y, D), since (by the normality of S), S′ may be constructed as the
normalization of S in the function field of S′ (which is independent of the choice
of (Y, D) since the restriction of (Y, D) to the generic point of S has already been
shown to be unique). Thus, the uniqueness of (Y, D) follows by considering the
classifying morphism (associated to (Y, D)) from S′ to the finite étale covering of
(Mg,r)Z[ 1l ] parametrizing orderings of the marked points and trivializations of the
l-torsion points of the Jacobian [since this covering is well-known to be a scheme,
for l sufficiently large].) We shall refer to Y (respectively, D; D; D) as the compact-
ification (respectively, divisor at infinity; divisor of cusps; divisor of marked points)
of X . A family of hyperbolic curves X → S is defined to be a morphism X → S
such that the restriction of this morphism to each connected component of S is a
family of hyperbolic curves of type (g, r) for some integers (g, r) as above. If the
divisor of cusps of a family of hyperbolic curves X → S forms a split finite étale
covering over S, then we shall say that this family of hyperbolic curves is cuspidally
split. A family of hyperbolic curves X → S of type (0, 3) (respectively, (1, 1)) will
be referred to as a tripod (respectively, once-punctured elliptic curve).

If XK (respectively, YL) is a hyperbolic curve over a field K (respectively, L),
then we shall say that XK is isogenous to YL if there exists a hyperbolic curve ZM

over a field M together with finite étale morphisms ZM → XK , ZM → YL.

Section 1: Brief Review of Anabelian Geometry

Let K, L be local fields [cf. §0]; XK (respectively, YL) a hyperbolic curve [cf. §0]
over K (respectively, L). Any choice of basepoint for XK determines, up to inner
automorphism, the étale fundamental group ΠXK

def= π1(XK) of XK . Moreover,
ΠXK

fits into a natural exact sequence

1 → ΔX → ΠXK
→ GK → 1

where GK is the absolute Galois group of K; ΔX , which is often referred to as the
geometric fundamental group of XK , is defined so as to make the sequence exact.
Any choice of basepoint for YL determines a similar exact sequence for YL.

Proposition 1.1. (First Properties)

(i) ΠXK
is slim [cf. §0].
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(ii) Every isomorphism of profinite groups α : ΠXK

∼→ ΠYL
fits into a unique

commutative diagram
ΠXK

α−→ ΠYL⏐⏐�
⏐⏐�

GK −→ GL

where the vertical arrows are the surjections of the natural exact sequence(s) dis-
cussed above; the horizontal arrows are isomorphisms.

Proof. Assertion (i) (respectively, (ii)) follows from [Mzk2], Lemma 1.3.1 (respec-
tively, [Mzk2], Lemma 1.3.8). ©

Theorem 1.2. (Anabelian Theorem for Hyperbolic Curves over Local
Fields) The étale fundamental group functor determines a bijection between the set
of dominant morphisms of schemes

XK → YL

and the set of open outer homomorphisms φ : ΠXK
→ ΠYL

that fit into a
commutative diagram

ΠXK

φ−→ ΠYL⏐⏐�
⏐⏐�

GK −→ GL

for which the induced morphism GK → GL is an open immersion [i.e., an iso-
morphism onto an open subgroup of GL] which arises from an embedding of fields
L ↪→ K.

Proof. Recall that given a local field M , the topology of M may be always be
recovered solely from the field structure of M by observing that the ring of integers
OM of M is additively generated by O×

M , and that O×
M ⊆ M is equal to the

subgroup of elements of M× that are infinitely divisible by powers of some prime
number. In particular, the Qp-algebra structure of M [for some suitable prime
number p], as well as the prime number p itself [i.e., the unique prime number l
such that OM is not infinitely divisible by powers of l], may be recovered from the
field structure of M . In a similar vein, given a function field in one variable M ′

over M , consideration of the discrete valuations on M ′ with trivial restriction to
M reveals that the subfield M ⊆ M ′ may be recovered — solely from the field
structure of M ′ — as the subfield generated by the elements of (M ′)× that are
infinitely divisible by powers of some prime number. In light of these remarks,
Theorem 1.2 follows formally from [Mzk1], Theorem A. ©

Next, let us write XK ↪→ XK for the compactification [cf. §0] of XK . Let

x ∈ XK
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be a closed point. Thus, x determines, up to conjugation by an element of ΠXK
, a

decomposition group:
Dx ⊆ ΠXK

We shall refer to a closed subgroup of ΠXK
which arises in this way as a decom-

position group of ΠXK
. If x is a cusp, then we shall refer to the decomposition

group Dx as cuspidal. Note that Dx always surjects onto an open subgroup of GK .
Moreover, the subgroup

Ix
def= Dx

⋂
ΔX

is isomorphic to Ẑ(1) [i.e., the profinite completion of Z, Tate twisted once] (respec-
tively, {1}) if x is (respectively, is not) a cusp. We shall refer to a closed subgroup of
ΠXK

which is equal to “Ix” for some cusp x as a cuspidal geometric decomposition
group.

Theorem 1.3. (Decomposition Groups)

(i) (Determination of the Point) The closed point x is completely deter-
mined by the conjugacy class of the closed subgroup Dx ⊆ ΠXK

. If x is a cusp, then
x is completely determined by the conjugacy class of the closed subgroup Ix ⊆ ΠXK

.

(ii) (Commensurable Terminality) The subgroup Dx is commensurably ter-
minal in ΠXK

. If x is a cusp, then Dx = CΠXK
(H) for any open subgroup H ⊆ Ix.

(iii) (Absoluteness of Cuspidal Decomposition Groups) Every isomor-
phism of profinite groups

α : ΠXK

∼→ ΠYL

preserves cuspidal decomposition groups and cuspidal geometric decomposition groups.

(iv) (Cuspidal and Noncuspidal Decomposition Groups) No noncuspi-
dal decomposition group of ΠXK

is contained in a cuspidal decomposition group of
ΠXK

.

Proof. The first half of assertion (i) follows, for instance, formally from [Mzk1],
Theorem C; the second half of assertion (i) follows from elementary facts about
fundamental groups of topological surfaces. Assertion (ii) follows formally from
assertion (i) and the definition of a “decomposition group”. Assertion (iii) follows
from assertion (ii) and [Mzk2], Lemma 1.3.9. As for assertion (iv), we may assume,
by passing to a finite étale covering of XK , that XK is of genus ≥ 2, so that XK is
still hyperbolic. Then assertion (iv) follows from assertion (i). ©

Section 2: Categories of Dominant Morphisms

Let XK be a hyperbolic curve over a field K. Write XK ↪→ XK for the
compactification of XK .
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Definition 2.1.

(i) We shall refer to an open immersion

XK ↪→ YK

as a partial compactification, or PC, for short, of XK if the natural open immersion
XK ↪→ XK factors as the composite of the given morphism XK ↪→ YK with some
open immersion YK ↪→ XK . By abuse of notation, we shall also often speak of
“YK” as a PC of XK .

(ii) If XK ↪→ YK is a PC such that YK is a hyperbolic curve, then we shall say
that XK ↪→ YK [or YK ] is a hyperbolic partial compactification, or HPC, of XK .

(iii) If XK ↪→ YK is a PC such that the arrow “↪→” is an isomorphism, then
we shall say that XK ↪→ YK [or YK ] is a trivial partial compactification of XK .

Now we define a “category of dominant localizations”

DLoc(XK)

associated to the hyperbolic curve XK as follows: The objects of this category are
the hyperbolic partial compactifications

Y ↪→ Z

where Y is a hyperbolic curve over some field [which is necessarily a finite separable
extension of K] that arises as a finite étale covering Y → XK . The morphisms of
this category from an object Y ↪→ Z to an object Y ′ ↪→ Z ′ are diagrams of the
form

Y Y ′
⏐⏐�

⏐⏐�
Z −→ Z ′

where the vertical morphisms are the given morphisms, and the horizontal mor-
phism is a dominant morphism of schemes. By abuse of notation, we shall often
simply refer to the horizontal arrow Z → Z ′ as being a morphism of DLoc(XK).

Similarly, by stipulating that all schemes appearing in the definition of the cat-
egory DLoc(XK) given in the preceding paragraph be equipped with K-structures
[where we take the K-structure on XK to be the given K-structure] and that all
morphisms be K-morphisms, we obtain a category

DLocK(XK)

together with a natural faithful functor DLocK(XK) → DLoc(XK).
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Remark 2.2.0. Thus, the category DLoc(XK) is reminiscent of the category
“Loc(XK)” of [Mzk3], §2. Indeed, there is a natural faithful functor

Loc(XK) → DLoc(XK)

whose essential image consists of the objects Y ↪→ Z which are trivial partial
compactifications and the dominant morphisms Z → Z ′ which are finite étale. In
particular, if we denote by Ét(XK) the category of finite étale coverings of XK and
morphisms over XK , then we have natural faithful functors:

Ét(XK) → Loc(XK) → DLoc(XK)

Similarly, we have natural faithful functors: Ét(XK) → LocK(XK) → DLocK(XK).

Proposition 2.2. (Slimness of the Category of Dominant Localizations)
Suppose that K is a local field. Then the categories DLoc(XK), DLocK(XK) are
slim.

Proof. Indeed, by using the various copies of “Ét(Z)” [where, say, Y ↪→ Z is an
object of DLoc(XK)] lying inside DLoc(XK), DLocK(XK) [cf. Remark 2.2.0], the
slimness of the categories DLoc(XK), DLocK(XK) follows formally from Proposi-
tion 1.1, (i) [cf. also the discussion of slimness in §0]. ©

Next, let us consider the category DLocGK
(ΠXK

) defined as follows: An object
of this category is a surjection of profinite groups

H � J

where H ⊆ ΠXK
is an open subgroup; J is the quotient of H by the closed normal

subgroup generated by some collection of cuspidal geometric decomposition groups;
and we assume that J is “hyperbolic”, in the sense that the image of ΔX

⋂
H in

J is nonabelian. Given two objects Hi � Ji, where i = 1, 2, of this category, a
morphism in this category is defined to be a diagram of the form

H1 H2⏐⏐�
⏐⏐�

J1 −→ J2

where the vertical morphisms are the given morphisms, and the horizontal mor-
phism is an open outer homomorphism that is compatible with the various natural
[open] outer homomorphisms from the Hi, Ji to GK .

Now we have the following analogue of [Mzk3], Theorem 2.4:

Theorem 2.3. (Group-theoreticity of the Category of Dominant Local-
izations) Let K, L be local fields; XK (respectively, YL) a hyperbolic curve
over K (respectively, L). Then:
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(i) The étale fundamental group functor determines equivalences of cate-
gories

DLocK(XK) ∼→ DLocGK
(ΠXK

); DLocL(YL) ∼→ DLocGL
(ΠYL

)

(ii) Every isomorphism of profinite groups

α : ΠXK

∼→ ΠYL

induces an equivalence of categories

DLocGK
(ΠXK

) ∼→ DLocGL
(ΠYL

)

hence also [by applying the equivalences of (i)] an equivalence of categories

DLocK(XK) ∼→ DLocL(YL)

in a fashion that is functorial, up to unique isomorphisms of equivalences of cat-
egories, with respect to α.

Proof. Indeed, assertion (i) follows formally from Theorem 1.2, while assertion
(ii) follows, in light of Proposition 1.1, (ii); Theorem 1.3, (iii), formally from the
definition of the categories “DLocGK

(ΠXK
)”, “DLocGL

(ΠYL
)”. [Here, we note that

the uniqueness of the isomorphisms of equivalences of categories involved follows
from Proposition 2.2.] ©

Next, let
Dx ⊆ ΠXK

be a decomposition group associated to some closed point x ∈ XK .

Definition 2.4. We shall say that x or Dx is of DLoc-type if Dx admits an
open subgroup that arises as the image via a morphism Z → XK of DLocK(XK)
of some cuspidal decomposition group of ΠZ .

Corollary 2.5. (Group-theoreticity of Decomposition Groups of DLoc-
type) In the notation of Theorem 2.3, the isomorphism

α : ΠXK

∼→ ΠYL

preserves the decomposition groups of DLoc-type.

Proof. This follows immediately from the definitions; Theorem 2.3 [and its proof];
Theorem 1.3, (ii), (iii). ©
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Corollary 2.6. (The Case of Once-punctured Elliptic Curves) In the
notation of Theorem 2.3, let us suppose further that XK, YL are once-punctured
elliptic curves. Then the isomorphism

α : ΠXK

∼→ ΠYL

preserves the decomposition groups of the “torsion closed points” — i.e., the closed
points that arise from torsion points of the underlying elliptic curve. Moreover,
the resulting bijection between torsion closed points of XK, YL is compatible with
the isomorphism on abelianizations of geometric fundamental groups Δab

X
∼→ Δab

Y

— i.e., “Tate modules” — induced by α.

Proof. Indeed, if n ≥ 1 is an integer, write

φ : ZK → XK

for the finite étale covering determined by “multiplication by n”. Note that this
covering may also be described more group-theoretically as the covering associated
to the open subgroup H ⊆ ΠXK

[which is easily verified to be unique, up to
conjugation in ΠXK

] such that: (i) H contains a cuspidal decomposition group of
ΠXK

; (ii) H
⋂

ΔX is equal to the inverse image in ΔX of the subgroup n·Δab
X ⊆ Δab

X .

Observe that ZK admits XK as an HPC, by “filling in” all of the cusps other
that the “origin”. Thus, we obtain an open immersion

ψ : ZK ↪→ XK

— i.e., an object of DLocK(XK), which exhibits the closed points of XK that arise
from n-torsion points of the underlying elliptic curve as closed points of DLoc-type
type. Thus, by transporting φ, ψ via the equivalences of Theorem 2.3, (i), and
applying Theorem 1.3, (ii), (iii) [as in the proof of Corollary 2.5], we conclude that
α preserves the decomposition groups of the torsion closed points. Finally, the
compatibility with the induced morphism on Tate modules follows by considering
the automorphisms of ZK over [i.e., relative to φ] XK , after possibly enlarging K.
©

Definition 2.7. We shall say that a closed point x ∈ XK is algebraic if, for
some finite extension L of K, some hyperbolic curve YF over a number field F ⊆ L,
and some L-isomorphism XL

∼→ YL [where XL
def= XK ×K L, YL

def= YF ×F L], x
lies under a closed point xL ∈ XL which maps to a closed point of Y F under the
composite XL

∼→ Y L → Y F .

Remark 2.7.1. One verifies immediately that if a closed point x ∈ XK is
algebraic, then given any L′-isomorphism

XL′
∼→ Y ′

L′



GALOIS SECTIONS IN ABSOLUTE ANABELIAN GEOMETRY 11

[where XL′
def= XK ×K L′; Y ′

L′
def= Y ′

F ′ ×F ′ L′; L′ is a finite extension of K; Y ′
F ′ is a

hyperbolic curve over a number field F ′ ⊆ L′], it holds that any point xL′ ∈ XL′

lying over x maps to a closed point of Y
′
F ′ under the composite XL′

∼→ Y
′
L′ → Y

′
F ′ .

Corollary 2.8. (The Case of Genus Zero) In the notation of Theorem 2.3, let
us suppose further that XK (respectively, YL) is isogenous [cf. §0] to a hyperbolic
curve of genus zero. Then the isomorphism

α : ΠXK

∼→ ΠYL

preserves the decomposition groups of the algebraic closed points. In particular,
XK is defined over a number field [or, equivalently: XK has at least one alge-
braic point] if and only if YL is.

Proof. By Theorem 1.3, (ii), and [the “LocK(−) portion” — already contained
in [Mzk3], Theorem 2.4 — of] Theorem 2.3, (ii), one reduces immediately to the
case where both XK and YL are of genus zero. Also, by Theorem 1.3, (ii), we may
always enlarge K, L without loss of generality; in particular, we may assume that
XK , YL are cuspidally split, so that both curves admit a [cuspidally split] tripod as
an HPC. Then we argue as in the proof of Corollary 2.6: That is to say, given any
algebraic x ∈ XK , we observe that [after possibly enlarging K] there exists, by the
definition of “algebraic” and the famous main result of [Belyi], a “Belyi map”

β : XK → XK

that maps x, as well as all of the cusps of XK , to cusps of XK , and, moreover, is
unramified over the open subscheme of XK determined by the tripod that forms an
HPC for XK . In particular, β is unramified over the open subscheme XK ⊆ XK .
Put another way, there exists an open immersion φ : ZK ↪→ XK [i.e., an HPC]
such that the composite β ◦ φ factors through XK ⊆ XK in such a way that the
resulting morphism βZ : ZK → XK is finite étale. In particular, βZ exhibits φ as an
object of DLocK(XK), and so φ exhibits x as a closed point of DLoc-type. Thus, by
transporting φ, βZ via the equivalences of Theorem 2.3, (i), and applying Theorem
1.3, (ii), (iii) [as in the proof of Corollary 2.5], we conclude that α preserves the
decomposition groups of algebraic closed points, as desired. ©

Remark 2.8.1. In fact, tracing through the proofs of Corollaries 2.6, 2.8 shows
that in these proofs, we did not actually need to use the full “Hom” version of
Theorem 1.2. That is to say, for these proofs, in fact the “isomorphism version”
of Theorem 1.2 [i.e., the bijection between isomorphisms “XK

∼→ YL” and certain
isomorphisms “ΠXK

∼→ ΠYL
”], applied in combination with Theorem 1.3, (iii), is

sufficient. Indeed, if we use the natural faithful functor discussed in Remark 2.2.0
to think of LocK(XK) as a [not necessarily full!] subcategory of DLocK(XK), then
let us denote by

Arr(LocK(XK)) ⊆ OFLocK(XK) ⊆ Arr(DLocK(XK))
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the collection of arrows Z → Z ′ of DLocK(XK) which factor as the composite of an
arrow Z → Z ′′ [of DLocK(XK)] which is an open immersion [i.e., an HPC] with an
arrow Z ′′ → Z ′ [of DLocK(XK)] which is finite étale. We shall refer to the arrows
of OFLocK(XK) as arrows of OF-type [i.e., “open immersion + finite étale” type].
Similarly, we define

OFLocK(ΠXK
) ⊆ Arr(DLocGK

(ΠXK
))

to be the collection of arrows J1 → J2 of DLocGK
(ΠXK

) that factor as the composite
of a surjection J1 � J3 [in DLocGK

(ΠXK
)] whose kernel is normally topologically

generated by some collection of cuspidal geometric decomposition groups, with an
open immersion J3 ↪→ J2 [in DLocGK

(ΠXK
)]. Then [cf. Theorem 2.3, (ii), and its

proof] we obtain an equivalence of categories

DLocGK
(ΠXK

) ∼→ DLocGL
(ΠYL

)

whose induced map on “Arr(−)’s” maps OFLocK(ΠXK
) into OFLocL(ΠYL

) by
applying Proposition 1.1, (ii); Theorem 1.3, (iii) [i.e., without using Theorem 1.2
at all!]. Moreover, the isomorphism portion of Theorem 1.2 implies that the étale
fundamental group functor induces a natural commutative diagram

OFLocK(XK) ⊆ Arr(DLocK(XK))⏐⏐�
⏐⏐�

OFLocK(ΠXK
) ⊆ Arr(DLocGK

(ΠXK
))

such that the vertical arrow on the left is “essentially surjective” — i.e., more
precisely: induces a bijection on abstract equivalence [cf. §0] classes [defined relative
to the category structures of DLocK(XK), DLocGK

(ΠXK
)] lying in OFLocK(XK),

OFLocK(ΠXK
). Since the proofs of Corollaries 2.6, 2.8 only make use of arrows

of OF-type, the bijection of abstract equivalence classes just observed, together
with the equivalence DLocGK

(ΠXK
) ∼→ DLocGL

(ΠYL
) — all of which involves only

the isomorphism portion of Theorem 1.2 — are sufficient for the proofs of these
categories, as claimed.

Section 3: Limits of Galois Sections

Let XK be a hyperbolic curve over a local field K. As in §1, 2, we have an
exact sequence:

1 → ΔX → ΠXK
→ GK → 1

Since ΔX is topologically finitely generated, it follows that there exists a sequence
of characteristic open subgroups

. . . ⊆ ΔX [j + 1] ⊆ ΔX [j] ⊆ . . . ⊆ ΔX



GALOIS SECTIONS IN ABSOLUTE ANABELIAN GEOMETRY 13

[where j ranges over the positive integers] of ΔX such that
⋂

j ΔX [j] = {1}. In
particular, given any section

σ : GK → ΠXK

we obtain open subgroups

ΠXK [j,σ]
def= Im(σ) · ΔX [j] ⊆ ΠXK

[where Im(σ) denotes the image of σ in ΠXK
] corresponding to a tower of finite

étale coverings
. . . → XK [j + 1, σ] → XK [j, σ] → . . . → XK

of XK by hyperbolic curves over K.

The following lemma is reminiscent of the techniques of [Tama], [Mzk1]:

Lemma 3.1. (Criterion for Galois Sections Associated to Rational
Points) Suppose that XK is defined over a number field, i.e., there exists a
hyperbolic curve XK over a number field F ⊆ K such that XK = XF ×F K. Let
σ : GK → ΠXK

be a section such that Im(σ) is not contained in any cuspidal
decomposition group of ΠXK

. Then the following conditions on σ are equivalent:

(i) σ arises from a point x ∈ XK(K) [i.e., “Im(σ) = Dx”].

(ii) For every integer j ≥ 1, XK [j, σ](K) 
= ∅.
(iii) For every integer j ≥ 1, XK [j, σ](K)alg 
= ∅ [where the superscript “alg”

denotes the subset of algebraic [K-rational] closed points].

(iv) For every integer j ≥ 1, ΠXK [j,σ] contains a decomposition group [i.e.,
relative to ΠXK

] of an algebraic closed point of XK that surjects onto GK .

Proof. (i) =⇒ (ii): It follows from the definitions that x ∈ XK(K) lifts to a point
of ∈ XK [j, σ](K), for all j ≥ 1, which implies (ii).

(iii) =⇒ (ii), (iv); (iv) =⇒ (iii): Immediate from the definitions.

(ii) =⇒ (i): For j ≥ 1, choose points xj ∈ XK [j, σ](K). Since the topological
space ∏

j≥1

XK [j, σ](K)

is compact, it follows that there exists some infinite set of positive integers J ′ such
that for any j ≥ 1, the images of the xj′ , where j′ ≥ j, in

XK [j, σ](K)

converge to a point yj ∈ XK [j, σ](K). Moreover, note that, by the definition of yj ,
it follows that if j1 > j2, then yj1 maps to yj2 in XK [j2, σ](K). In particular, if we
write y ∈ XK(K) for the image of the yj in XK(K), then it follows formally from
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the fact that the yj form a compatible sequence of points of the sets XK [j, σ](K)
that Im(σ) is contained in the decomposition group [well-defined up to conjugation]
Dy. On the other hand, by our assumption that Im(σ) is not contained in any
cuspidal decomposition group of ΠXK

, we conclude that y is not a cusp, hence that
“Im(σ) = Dy”, as desired.

(ii) =⇒ (iii): Given a point xj ∈ XK [j, σ](K) with image x ∈ XK(K) =
XF (K), it follows from “Krasner’s lemma” [cf., e.g., [Kobl], p. 69-70] that one may
approximate x by a point x′ ∈ XF (F ′) ⊆ XF (K) = XK(K), where F ′ ⊆ K is a
finite extension of F , which is sufficiently close to x that [just like x] it lifts to a
point x′

j ∈ XK [j, σ](K), which is necessarily algebraic, as desired. ©

Corollary 3.2. (Absoluteness of Decomposition Groups for Genus Zero)
Let K, L be local fields; XK (respectively, YL) a hyperbolic curve over K
(respectively, L), which is, in fact, defined over a number field. Suppose,
moreover, that XK (respectively, YL) is isogenous [cf. §0] to a hyperbolic curve of
genus zero. Then every isomorphism of profinite groups

α : ΠXK

∼→ ΠYL

preserves the decomposition groups of the closed points.

Proof. Indeed, Corollary 3.2 follows formally from Corollary 2.8; Theorem 1.3,
(iii), (iv); and the equivalence (i) ⇐⇒ (iv) of Lemma 3.1. ©

Remark 3.2.1. Since any once-punctured elliptic curve is isogenous to a hy-
perbolic curve of genus zero, one might think, at first glance, that Corollary 2.6 is
[essentially] a “special case” of Corollary 3.2. In fact, however, this is false, since
Corollary 2.6 applies even to curves which are not necessarily defined over a number
field.

Section 4: Discrete and Integral Structures at Cusps

Let XK be a hyperbolic curve over a local field K; write XK ↪→ XK for the
compactification of XK . Also, if p is the residue characteristic of K, then we shall
write Ẑ′ def= Ẑ/Zp. Let

Dx ⊆ ΠXK

be a decomposition group associated to some cusp x ∈ XK(K). Then we have an
exact sequence

1 → Ix (∼= Ẑ(1)) → Dx → GK → 1

whose splittings form a torsor over

H1(GK , Ẑ(1)) ∼= (K×)∧
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[where the “∧” denotes the profinite completion]. If ωx denotes the cotangent space
to XK at x, then any choice of a nonzero θ ∈ ωx determines a splitting of this
torsor by considering the Ẑ(1)-torsor over the formal completion (XK)x [i.e., of
XK at x] given by taking N -th roots [as N ranges over the positive integers] of any
local coordinate t ∈ mXK ,x such that dt|x = θ. In particular, if the pointed stable
curve associated to XK has stable reduction over OK , then the cotangent module to
this stable reduction at the OK-valued point determined by x determines a natural
integral structure on ωx [i.e., a rank one free OK -submodule of the one-dimensional
K-vector space ωx]. In particular, this integral structure determines a reduction of
the structure group of the torsor of splittings considered above from (K×)∧ to O×

K .

Definition 4.1.

(i) If (K×)∧ → A is a continuous homomorphism of topological groups, then
the torsor obtained from the torsor of splittings considered above by changing the
structure group via this homomorphism will be referred to as the A-torsor at x. If,
moreover, B ⊆ A is a closed subgroup, then any reduction of the structure group
of the A-torsor at x from A to B will be referred to as a B-torsor structure at x.

(ii) A O×
K - (respectively, K×-) torsor structure on the (K×)∧-torsor at x will

be referred to as a(n) integral (respectively, discrete) structure on the cuspidal
decomposition group Dx. Let us think of (K×)∧ ⊗ Ẑ′ as a quotient of (K×)∧;
write (O×

K)′, (K×)′ for the images of O×
K , K×, respectively, in (K×)∧ ⊗ Ẑ′. Then

a (O×
K)′- (respectively, (K×)′-) torsor structure on the (K×)∧ ⊗ Ẑ′-torsor at x will

be referred to as a(n) tame integral (respectively, tame discrete) structure on the
cuspidal decomposition group Dx.

(iii) If XK has stable reduction over OK (respectively, XK is arbitrary), then
the particular integral (respectively, discrete) structure on Dx arising [as discussed
above] from a generator of the rank one free OK -submodule of ωx determined
by the stable reduction of XK (respectively, any nonzero element of ωx) will be
referred to as the canonical integral (respectively, discrete) structure on the cuspidal
decomposition group Dx. The canonical integral (respectively, discrete) structure
on Dx induces a tame integral (respectively, tame discrete) structure on Dx which
we shall also refer to as canonical.

(iv) An arbitrary closed point x′ of XK will be referred to as absolute if, for
every YL, α as in Theorem 2.3, there exists a closed point y′ of Y L such that
α(Dx′) = Dy′ . A nonconstant unit U ∈ Γ(XK ,O×

XK
) on XK will be called coab-

solute if XK admits an absolute point at which U is invertible. The hyperbolic
curve XK will be called coabsolute if it admits a coabsolute unit. The hyperbolic
curve XK will be called quasi-coabsolute if it is isogenous to a coabsolute hyperbolic
curve. If XK has stable reduction over OK (respectively, XK is arbitrary), then the
cusp x will be called integrally absolute (respectively, discretely absolute) if, for ev-
ery YL, α as in Theorem 2.3, the isomorphism Dx

∼→ Dy [where y is a cusp of YL

— cf. Theorem 1.3, (iii)] induced by α is compatible with the canonical integral
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(respectively, discrete) structures on Dx, Dy. Similarly, one has a notion of tamely
integrally absolute and tamely discretely absolute cusps.

(v) The cusp x will be called subprincipal if it is contained in the support of a
cuspidal principal divisor on [i.e., principal divisor supported in the cusps of] XK .
The hyperbolic curve XK will be called subprincipally ample if every cusp of XK

is subprincipal. The hyperbolic curve XK will be called subprincipally quasi-ample
if it is isogenous to a subprincipally ample hyperbolic curve.

Remark 4.1.1. By Theorem 1.3, (iii), cusps are always absolute. By Corollaries
2.6, 3.2, once-punctured elliptic curves, as well as hyperbolic curves that are isoge-
nous to a hyperbolic curve of genus zero which is defined over a number field, have
infinitely many absolute points.

Next, let us write
L def= OXK

(x)

for the line bundle determined by the cusp x;

L → XK

for the geometric line bundle determined by L; and

(L ⊇) L× → XK

for the complement of the zero section in L. Thus, the natural inclusion OXK
↪→

OXK
(x) determines a section

XK → L

whose restriction to XK determines a section XK → L×, hence a morphism of
fundmental groups:

ΠXK
→ ΠL×

def= π1(L×)

Lemma 4.2. (The Line Bundle Associated to a Cusp) Suppose that XK

is of type (g, r), where g ≥ 2, r = 1. Then:

(i) ΠL× fits into a short exact sequence:

1 → Ẑ(1) → ΠL× → ΠXK
→ 1

Moreover, the resulting extension class ∈ H2(ΠXK
, Ẑ(1)) is the first Chern class of

the line bundle L.

(ii) The morphism of fundmental groups ΠXK
→ ΠL× induces an isomorphism

Ix
∼→ Ker(ΠL× → ΠXK

). In particular, the morphism ΠXK
→ ΠL× is surjective.
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(iii) Write ΔX/X
def= Ker(ΠXK

� ΠXK
). Then the quotient of ΔX/X by

Ker(ΠXK
→ ΠL×) ⊆ ΔX/X

is the maximal quotient of ΔX/X on which the conjugation action by ΔX is
trivial.

Proof. Assertion (i) follows from [Mzk4], Lemmas 4.3, 4.4, 4.5. Assertion (ii)
is immediate from the discussion preceding Definition 4.1 involving roots of local
coordinates. As for assertion (iii), write Q1

def= ΔX/X/Ker(ΠXK
→ ΠL×); Q2 for

the maximal quotient of ΔX/X on which the conjugation action by ΔX is trivial.
Thus, we have a natural surjection Q2 � Q1. Now assertion (iii) follows from
assetion (ii) and the well-known fact that ΔX/X is topologically generated by the
ΔX -conjugates of Ix. ©

Next, let us recall the notation of [Mzk2], §1.2: By local class field theory, we
have a natural isomorphism

(K×)∧ ∼→ Gab
K

which we may use to think of the group of roots of unity of (K×)∧ as a subgroup:

μQ/Z(K) ⊆ Gab
K

Also, we recall [cf. [Mzk2], Proposition 1.2.1, (iv)] that the subgroup K× ⊆
(K×)∧ ∼→ GK may be recovered group-theoretically from the profinite group struc-
ture of GK . Allowing “K” to vary among the various finite extensions of a given
K inside an algebraic closure K of K, we obtain groups:

μQ/Z(K); μ
�Z
(K) def= Hom(Q/Z, μQ/Z(K)); μ

�Z′(K) def= μ
�Z
(K) ⊗ Ẑ′

In particular, by considering roots of local coordinates as in the discussion preceding
Definition 4.1, we obtain a natural isomorphism μ

�Z
(K) ∼→ Ix.

Theorem 4.3. (Rigidity of Cuspidal Geometric Decomposition Groups)
In the notation of Theorem 2.3, suppose that α induces isomorphisms

Ix
∼→ Iy; μ

�Z
(K) ∼→ μ

�Z
(L)

where x ∈ XK(K) (respectively, y ∈ Y L(L)) is a cusp. Then these isomorphisms
are compatible with the natural isomorphisms μ

�Z
(K) ∼→ Ix; μ

�Z
(L) ∼→ Iy.

Proof. Indeed, by replacing XK , YL by finite étale coverings, one reduces immedi-
ately to the case where both curves are of genus ≥ 2. By “filling in” [cf. Theorem
1.3, (iii)] all of the cusps other than those of interest [i.e., x, y], we may assume,
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moreover, that XK , YL satisfy the hypotheses of Lemma 4.2. Thus, by Lemma 4.2,
we conclude that the morphism

H2(ΔX , Ix) ∼→ H2(ΔY , Iy)

induced by α is compatible with the extension classes of Lemma 4.2. On the other
hand, by [Mzk2], Lemma 2.5, (ii), the morphism

H2(ΔX , μ
�Z
(K)) ∼→ H2(ΔY , μ

�Z
(L))

induced by α is compatible with the elements determined by the Chern class of a
point on either side. Since all of these “H2’s” are isomorphic to Ẑ, we thus obtain
the compatibility asserted in the statement of Theorem 4.3. ©

Proposition 4.4. (Tame Integral Absoluteness) Suppose that XK has
stable reduction over OK . Then:

(i) Every cusp of XK is tamely integrally absolute.

(ii) A cusp of XK is discretely absolute if and only if it is integrally
absolute.

Proof. Assertion (ii) follows formally from assertion (i) and the fact that the
restriction of the projection Ẑ � Ẑ′ to Z ⊆ Ẑ is injective. Now we consider
assertion (i). First, let us observe that it is immediate from the definitions that it
suffices to prove assertion (i) after replacing XK by a finite étale covering of XK

that extends to an admissible covering of the stable model of XK . In particular,
we may assume without loss of generality that every irreducible component of the
normalization of the geometric special fiber of this stable model has genus ≥ 1.

Next, let us recall the “étale quotient”

ΠXK
� Πet

XK

of [Mzk2], §2. Thus, the finite quotients of Πet
XK

correspond to the coverings of
XK that arise from finite étale coverings of the stable model of XK that are tamely
ramified at the cusps. In particular, the quotient of GK determined by Πet

XK
is

the natural quotient GK � Gk, where k is the residue field of K. If x is a cusp
of XK , then [in light of our assumption that every irreducible component of the
normalization of the geometric special fiber of the stable model has genus ≥ 1] the
quotient

Dx � D′
x

determined by Πet
XK

fits into an exact sequence:

1 → I ′
x → D′

x → Gk → 1

[where I ′
x

def= Ix ⊗ Ẑ′]. In particular, the splittings of this exact sequence form a
torsor over H1(Gk, I ′

x) ∼= k×. These splittings may be thought of as elements of
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H1(D′
x, I ′

x) whose restriction to I ′
x is equal to the identity element of H1(I ′

x, I ′
x) =

Hom(I ′
x, I ′

x). Thus, unraveling the definitions, one verifies immediately that the
pull-back to Dx of any such element of H1(D′

x, I ′
x) forms an element of H1(Dx, I ′

x)
which determines the canonical tame integral structure on Dx. Since the étale
quotient is compatible with isomorphisms α as in Theorem 2.3 [cf. [Mzk2], Lemma
2.2, (ii)], we thus conclude that x is tamely integrally absolute, as desired. ©

Proposition 4.5. (Absoluteness and Coverings) Let Z → XK be a finite
étale covering. Let z be a closed point of the compactification Z of Z that maps
to a closed point x of XK. Then:

(i) z is absolute (respectively, a discretely absolute cusp) if and only if x
is.

(ii) Suppose that XK , Z have stable reduction [over the rings of integers of
their respective fields of constants]. Then z is an integrally absolute cusp if and
only if x is.

Proof. Assertion (i) is immediate from the definitions; [the “LocK(−) portion” —
already contained in [Mzk3], Theorem 2.4 — of] Theorem 2.3, (ii) [cf. the proof
of Corollary 2.8]; Theorem 1.3, (ii); the fact that Ẑ/Z is divisible. Assertion (ii) is
immediate from assertion (i) and Proposition 4.4, (ii). ©

Before proceeding, we recall the following well-known result:

Lemma 4.6. (Vanishing of Galois Invariants of the Tate Module) We
have: H0(GK , H1(ΔX , μ

�Z
(K))) = 0.

Proof. Since TX
def= Δab

X
, i.e., the Tate module of the Jacobian JX of XK , is

isomorphic to its Cartier dual, it suffices to show that H0(GK , TX) = 0, i.e., that
the torsion subgroup of JX(K) is finite. Since JX is a proper group scheme over
K, it follows that the p-adic topology on K determines a p-adic topology on JX(K)
with respect to which JX(K) forms a compact p-adic Lie group. As is well-known
[cf., e.g., [Serre], Chapter V, §7], the exponential map for this p-adic Lie group
determines an isomorphism of a certain open neighborhood of the identity of JX(K)
with a free Zp-module of finite rank. Thus, the desired finiteness follows formally
from this isomorphism, together with the compactness of JX(K). ©

Remark 4.6.1. The author wishes to thank A. Tamagawa for informing him of
the simple proof of Lemma 4.6 given above.

Next, let us observe that for any integer N ≥ 1, the Kummer exact sequence

1 → μN → Gm → Gm → 1
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[where Gm → Gm denotes the N -th power map on Gm; μN is defined so as to make
the sequence exact] on the étale site of XK determines a long exact sequence in
cohomology, hence, in particular, by letting N vary, an injection

HX
def= Γ(XK ,O×

XK
) ↪→ H∧

X ↪→ H1(ΠXK
, μ

�Z
(K))

[where we use the easily verified fact that HX is residually finite]. On the other
hand, the Leray spectral sequence for the quotient ΠXK

→ GK yields an exact
sequence:

0 → (K×)∧ → H1(ΠXK
, μ

�Z
(K)) → DX

def= H0(GK , H1(ΔX , μ
�Z
(K)))

Moreover, since, by Lemma 4.6, H0(GK , H1(ΔX , μ
�Z
(K))) = 0, it follows that, if we

assume, for simplicity, that XK is cuspidally split, then restriction to the various
“Ix” in ΔX determines [by applying the natural isomorphisms Ix

∼→ μ
�Z
(K)] an

injection
DX ↪→ PX

def=
∏
x

Ẑ

[where the product ranges over the cusps x of XK ]. In particular, we obtain exact
sequences:

0 → K× → HX → PX ; 0 → (K×)∧ → H∧
X → PX

Write EX
def= Im(HX) ⊆ PX for the image of HX in PX [so we obtain an induced

injection E∧
X ↪→ PX ]. Thus, the maps

HX → PX ; H∧
X → PX

are the maps obtained by associating to a function in HX its divisor of zeroes
and poles. Put another way, EX ⊆ PX may be characterized as the submodule of
cuspidal principal divisors.

Proposition 4.7. (Principal Cuspidal Divisors) In the notation of Theorem
2.3, assume that XK, YL are cuspidally split. Then the isomorphism

PX
∼→ PY

induced [cf. Theorem 1.3, (iii)] by α maps EX onto EY .

Remark 4.7.1. In the statement of Proposition 4.7, as well as in the discussion to
follow, we shall use similar notation for the objects associated to YL to the notation
used for the various objects just defined for XK .

Proof. Write JX (respectively, AX) for the Jacobian (respectively, Albanese vari-
ety) of XK . Thus, the natural map XK → AX determines a surjection on funda-
mental groups ΠXK

� ΠAX

def= π1(AX) whose kernel is the kernel of ΔX � Δab
X

.
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In particular, any pair of sections of ΠXK
→ GK determines a pair of sections

of ΠAX
→ GK whose difference determines an element of H1(GK , Δab

X
). More-

over, if these sections arise from points ∈ XK(K), then the resulting element of
H1(GK , Δab

X
) completely determines the point of JX(K) given by forming the dif-

ference of these two points [cf., e.g., [Mzk1], the discussion preceding Definition
6.2; [BK], Example 3.11]. More generally, given any divisor of cusps on XK with
Z-coefficients of degree 0, the divisor is principal if and only if the resulting element
of H1(GK , Δab

X
) vanishes. Since the sections of ΠXK

→ GK arising from cusps
are preserved by α [cf. Theorem 1.3, (iii)], we thus conclude that the isomorphism
PX → PY induced by α maps EX onto EY , as desired. ©

Definition 4.8. We shall say that XK is unitwise absolute if, in the notation of
Theorem 2.3, the isomorphism

H1(ΠXK
, μ

�Z
(K)) ∼→ H1(ΠYL

, μ
�Z
(L))

induced by α maps the image of Γ(XK ,O×
XK

) via the Kummer map onto the image
of Γ(YL,O×

YL
) via the Kummer map.

Corollary 4.9. (Divisor-Theoretic Properties) In the notation of Theorem
2.3, let x, y (respectively, A ∈ EX , B ∈ EY ) be cusps (respectively, cuspidal
principal divisors) of XK , YL, respectively, that correspond via α [cf. Proposition
4.7]. Then:

(i) x is subprincipal if and only if y is.

(ii) A is the divisor of a coabsolute unit if and only if B is.

(iii) XK is coabsolute (respectively, quasi-coabsolute) if and only if YL is.

(iv) XK is subprincipally ample (respectively, subprincipally quasi-ample)
if and only if YL is.

Proof. In light of Proposition 4.7, all of these statements follow formally from
the definitions. Also, we note that for the various “quasi-” properties, one must
apply [the “LocK(−) portion” — already contained in [Mzk3], Theorem 2.4 — of]
Theorem 2.3, (ii), as in the proof of Corollary 2.8. ©

Theorem 4.10. (Units and Canonical Integral Structures) Let XK be a
hyperbolic curve over a local field K. Then:

(i) If XK is quasi-coabsolute, then it admits a discretely absolute cusp.

(ii) If XK admits a discretely absolute cusp or an absolute noncusp [i.e.,
an absolute point which is not a cusp], then XK is unitwise absolute.
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(iii) If XK is unitwise absolute and subprincipally ample, then every
cusp of XK is discretely absolute.

(iv) Suppose that XK has stable reduction over OK . Then if XK is quasi-
coabsolute and subprincipally quasi-ample, then every cusp of XK is inte-
grally absolute.

Proof. First, we consider assertion (i). In light of Proposition 4.5, (i), we may
assume that XK is coabsolute. Let U ∈ HX be a coabsolute unit of XK ; let x be a
cusp of XK at which U fails to be invertible. If U has a zero of order (Z �) n 
= 0
at x, then the restriction of the class

ηU ∈ H1(ΠXK
, μ

�Z
(K))

determined by U to Dx determines a splitting of the torsor obtained by applying a
change of structure group to the (K×)∧-torsor at x via the map (K×)∧ → (K×)∧

given by multiplication by n. Since n 
= 0, and Ẑ/Z is divisible, it thus follows
that this splitting is sufficient to determine the canonical discrete structure on Dx.
Let us write εU ∈ EX for the image of ηU in EX . Then εU determines the set
(K×)∧ · ηU . On the other hand, since U is coabsolute, it follows that XK admits
an absolute point x′ at which U is invertible. Thus, the subset

K× · ηU ⊆ (K×)∧ · ηU

may be characterized as the set of elements of (K×)∧ · ηU whose restriction to Dx′

— which [by the invertibility of U at x′] necessarily lies in

(K×)∧ ∼= H1(GK , μ
�Z
(K)) ⊆ H1(Dx′ , μ

�Z
(K))

— in fact lies inside K× ⊆ (K×)∧. Thus, Theorem 4.3, Proposition 4.7, together
with the absoluteness of x′, imply that x is discretely absolute, as desired.

Next, we consider assertion (ii). Let x be a discretely absolute cusp or an
absolute noncusp of XK . Then, as in the argument applied in the proof of asser-
tion (i), the image of HX in H1(ΠXK

, μ
�Z
(K)) may be characterized as the set of

elements lying over elements of EX whose restriction to Dx determines a class in
H1(Dx, μ

�Z
(K)) that lies in the submodule of this cohomology module generated by

the elements that define splittings “compatible with the canonical discrete structure
on Dx” [where in the noncuspidal case, we take this compatibility to mean that
the restriction to Dx lies in K× ⊆ (K×)∧, as in the proof of assertion (i)]. Thus,
assertion (ii) follows from Theorem 4.3, Proposition 4.7, together with the discrete
absoluteness [in the cuspidal case] or absoluteness [in the noncuspidal case] of x.

Next, we observe that assertion (iii) follows via the argument applied in the
proof of assertion (i), since the hypothesis that XK is unitwise absolute and sub-
principally ample implies that for every cusp x of XK , there exists a unit U ∈ HX

that is not invertible at x and whose class in H1(ΠXK
, μ

�Z
(K)) is mapped [in the

notation of Theorem 2.3] to a class in H1(ΠYL
, μ

�Z
(L)) that lies in the image of HY .
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Finally, we observe that assertion (iv) is a formal consequence of Proposition
4.4, (ii); Proposition 4.5, (i); assertions (i), (ii), (iii). ©

Corollary 4.11. (The Case of Genus Zero) Let XK be a hyperbolic
curve over a local field K which is isogenous to a hyperbolic curve of genus
zero. Then XK is quasi-coabsolute, subprincipally quasi-ample, and unit-
wise absolute. In particular, if XK has stable reduction over OK , then every
cusp of XK is integrally absolute.

Proof. In light of Theorem 4.10, it suffices to show that if XK is of genus zero and
cuspidally split, then XK is coabsolute and subprincipally ample. But since cusps
are always absolute [cf. Theorem 1.3, (iii)], these properties follow formally from
the following two elementary facts: (a) every divisor of degree 0 on XK is principal;
(b) XK has at least 3 cusps. ©

In certain situations, the O×
K -torsor determined by the canonical integral struc-

ture on the cuspidal decomposition group Dx admits an even “finer reduction of
structure group”, as follows:

Corollary 4.12. (The Case of Once-punctured Elliptic Curves) Let XK be
a once-punctured elliptic curve over a local field K of residue characteristic

= 2. Suppose that XK has stable reduction over OK . Also, if n ≥ 1 is an
integer, we shall write μn(K) ⊆ O×

K for the subgroup of n-th roots of unity. Then
there exists a μ12(K)-torsor structure at the unique cusp x of XK which is
compatible with the canonical integral structure arising from the stable model
X log and, moreover, is preserved by arbitrary automorphisms of ΠXK

.

Proof. We may assume without loss of generality that all of the 2-torsion points
of the underlying elliptic curve of XK are defined over K. Write YK → XK for
the Galois covering of degree 4 determined by the “multiplication by 2” map on
the underlying elliptic curve of XK [so YK is hyperbolic of type (1, 4)] and Y log for
the stable model over Spec(OK)log [where the log structure on Spec(OK) is that
determined by the closed point] of the smooth log curve Y

log

K determined by YK .
Also, let us write e1, e2, e3, e4 for the four cusps of YK .

Let α : ΠXK

∼→ ΠXK
be an automorphism of ΠXK

. Note that, by Theorem 1.3,
(ii), any μ12(K)-torsor structure at x is preserved by arbitrary inner automorphisms
of ΠXK

. Thus, we may assume [by composing with a suitable inner automorphism
that induces a suitable element of Gal(YK/XK)] that the natural action of α on
the cusps of YK [cf. Theorem 1.3, (iii)] preserves e1.

Next, let us observe that [by the well-known definition of the group law on an
elliptic curve; the definition of YK → XK ] the divisor D

def= 2[e1] − 2[e2] on YK is
principal. Thus, there exists a unique rational function f on YK whose divisor of
zeroes and poles is D and whose value at e3 is 1. Since D has multiplicity 2 at
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e1, it follows that f determines a μ2(K)-torsor structure at e1, hence also at x.
Write η for the Kummer class [i.e., the image under the Kummer map] of f . In the
following, we shall write Kummer classes additively.

Now, observe that, by Proposition 4.7; Theorem 1.3, (iii), if α fixes all four
cusps of YK , then it follows that α preserves the class η, hence also the μ2(K)-torsor
structure at x determined by η.

Next, let us write Σ for the group of permutations of the three cusps e2, e3, e4

that arise from automorphisms β ∈ Aut(ΠXK
) that preserve e1. Thus, the order s

of Σ divides 6. Let β1, . . . , βs ∈ Aut(ΠXK
) be a collection of automorphisms that

give rise to the elements of Σ. Set:

η′ def= (6/s) ·
s∑

j=1

ηβj

Since YK is unitwise absolute by Corollary 4.11, it follows that η′ arises from a
rational function f ′ on YK which has a pole of order 12 at e1. In particular, η′

determines a μ12(K)-torsor structure at e1, hence also at x. Moreover, it follows
formally from the preceding observation concerning automorphisms α that fix all
four cusps of YK that arbitrary α [i.e., that are only assumed to fix e1] preserve the
μ12(K)-torsor structure determined by η′. Finally, the fact that this μ12(K)-torsor
structure is compatible with the canonical integral structure follows from the easily
verified fact that the rational function f is generically invertible [in light of our
assumption that the residue charactertistic of K is 
= 2] on the special fiber of Y .
This completes the proof. ©

Remark 4.12.1. The number “12” appearing in Corollary 4.12 is interesting
in light of the well-known fact that the line bundle on the moduli stack of elliptic
curves determined by the cotangent bundle at the origin of the tautological family
of elliptic curves has order 12 in the Picard group of this moduli stack.

Remark 4.12.2. It seems natural to expect that a(n) [perhaps somewhat more
complicated] analogue of Corollary 4.12 should hold for more general hyperbolic
curves XK . This topic, however, lies beyond the scope of this paper.
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